Nastroyke-info.ru » Инструменты, оборудование

Элеваторный узел системы отопления

Элеваторный узел системы отопления с фото

Обеспечение жилых домов и общественных зданий теплом – одна из главнейших задач коммунальных служб городов и поселков. Современные системы теплоснабжения – эта сложные комплексы, включавшие поставщиков тепла (ТЭЦ или котельные), разветвлённую сеть магистральных трубопроводов, специальные распределительные теплопункты, от которых идут ответвления к конечным потребителям.

Однако, подающийся по трубам к зданиям теплоноситель не напрямую попадает во внутридомовую сеть и конечные точки теплообмена – радиаторы отопления. В любом доме имеется собственный тепловой узел, в котором производится соответствующая регулировка уровня давления и температуры воды. Здесь установлены специальные устройства, выполняющие эту задачу. В последнее время все чаще  устанавливается современное электронное оборудование, которое позволяет в автоматическом режиме контролировать необходимые параметры и вносить соответствующие коррективы. Стоимость подобных комплексов – весьма высока, они напрямую зависят от стабильности электропитания, поэтому нередко эксплуатирующими жилой фонд организациямиотдается предпочтение старой проверенной схеме локальной регулировки температуры теплоносителя на входе в домовую сеть. И основным элементом подобной схемы является элеваторный узел системы отопления.

Элеваторный узел системы отопления

Цель настоящей статьи – дать понятие об устройстве и принципе работы самого элеватора, о его месте в системе и выполняемых им функциях. Кроме того, заинтересованные читатели получат урок по самостоятельному расчету этого узла.

Общие краткие сведения о системах теплоснабжения

Содержание статьи

  • 1 Общие краткие сведения о системах теплоснабжения
  • 2 Как устроен и работает элеватор отопления
  • 3 Расчет и подбор элеватора системы отопления
    • 3.1 Создание калькулятора для расчета
    • 3.2 Проведение расчетов и подбор нужной модели элеватора
  • 4 Видео: устройство и работа элеватора отопления

Чтобы правильно понять важность элеваторного узла, наверное, необходимо для начала кратко рассмотреть, как же работают центральные системы теплоснабжения.

ТЭЦ с системой тепловых магистралей

Источником тепловой энергии являются ТЭЦ или котельные, в которых осуществляется разогрев теплоносителя до нужной температуры за счёт использования того или иного вида топлива (уголь, нефтепродукты, природный газ и т.п.) Оттуда теплоноситель прокачивается по трубам к точкам потребления.

ТЭЦ или крупная котельная рассчитана на обеспечение теплом определенного района, порой – с очень немалой территорией. Системы трубопроводов получаются весьма протяжёнными и разветвленными. Как минимизировать потери тепла и равномерно распределить его по потребителям, так, чтобы, например, наиболее удаленные от ТЭЦ здания не испытывали недостаточности в нем? Это достигается тщательной термоизоляцией тепловых магистралей и поддержанием в них определенного теплового режима.

На практике используется несколько теоретически рассчитанных и практически проверенных температурных режимов функционирования котельных, которые обеспечивают и передачу тепла на значительные расстояния без существенных потерь, и максимальную эффективность, и экономичность работы котельного оборудования. Так, к примеру, применяются режимы 150/70, 130/70, 95/70 (температура воды в магистрали подачи / температура в «обратке»). Выбор конкретного режима зависит от климатического пояса региона и от конкретного уровня текущей зимней температуры воздуха.

Элеваторный узел системы отопления

Упрощенная схема подачи тепла от ТЭЦ (котельной) к потребителям

1 – Котельная или ТЭЦ.

2 – Потребители тепловой энергии.

3 – Магистраль подачи разогретого теплоносителя.

4 – Магистраль «обратки».

5 и 6 – Ответвления от магистралей к зданиям – потребителям.

7 – внутридомовые тепловые распределительные узлы.

От магистралей подачи и «обратки» идут ответвления в каждое здание, подключенное к данной сети. Но вот здесь сразу возникают вопросы.

  • Во-первых, разным объектам требуется различное количество тепла – не сравнить, к примеру, огромную жилую высотку и небольшое малоэтажное здание.
  • Во-вторых, температура воды в магистрали не соответствует допустимым нормам для подачи непосредственно на теплообменные приборы. Как видно из приведенных режимов, температура очень часто даже превышает точку кипения, и вода поддерживается в жидком агрегатном состоянии только лишь за счет высокого давления и герметичности системы.

Использование столь критичных температур в отапливаемых помещениях – недопустимо. И дело не только в избыточности поступления тепловой энергии – это чрезвычайно опасно. Любое прикосновение к разогретым до такого уровня батареям вызовет сильный ожог тканей, а в случае даже небольшой разгерметизации теплоноситель мгновенно превращается в горячий пар, что может повлечь очень серьезные последствия.


Элеваторный узел системы отопления

Правильный выбор радиаторов отопления – чрезвычайно важен!

Не все радиаторы отопления одинаковы. Дело не только и не столько в материале изготовления и внешнем виде. Они могут значительно различаться своими эксплуатационными характеристиками, адаптацией к той или иной системе отопления.

Как правильно подойти к выбору радиаторов отопления – в специальной статье нашего портала.

Таким образом, на локальном тепловом узле дома необходимо снизить температуру и давление до расчетных эксплуатационных уровней, обеспечив при этом требуемый отбор тепла, достаточный для нужд отопления конкретного здания. Эту роль выполняет специальное теплотехническое оборудование. Как уже говорилось, это могут быть современные автоматизированные комплексы, но очень часто отдается предпочтение проверенной схеме элеваторного узла.

Элеваторный узел системы отопления

Так может выглядеть простейший элеваторный узел в жилом доме

Если заглянуть на тепловой распределительный пункт здания (чаще всего они располагаются в подвале, в точке входа магистральных тепловых сетей), то можно увидеть узел, в котором явно видна перемычка между трубами подачи и «обратки». Именно здесь и стоит сам элеватор, об устройстве и принципе работы будет рассказано ниже.

Как устроен и работает элеватор отопления

Внешне сам элеватор топления представляет собой чугунную или стальную конструкцию, снабженную тремя фланцами для врезки в систему.

Элеваторный узел системы отопления

Внешний вид элеватора

Посмотрим на его строение внутри.

Элеваторный узел системы отопления

Схема устройства и принципа действия струйного элеватора

Перегретая вода из тепловой магистрали попадает во входной патрубок элеватора (поз. 1). Перемещаясь под давлением вперед, она проходит через узкое сопло (поз. 2). Резкое повышение скорости потока на выходе из сопла приводит к эффекту инжекции — в приемной камере (поз. 3) создается зона разряжения. В эту область пониженного давления по законам термодинамики и гидравлики буквально «засасывается» вода из патрубка (поз. 4), подключенного к трубе «обратки». В результате в смесительной горловине элеватора (поз. 5) происходит перемешивание горячего и охлажденного потоков, вода получает необходимую для внутренней сети температуру, снижается давление до безопасного для теплообменных приборов уровня, а затем теплоноситель через диффузор (поз. 6) попадает в систему внутренней разводки.

Помимо понижения температуры, инжектор выполняет роль своеобразного насоса – он создае т требуемый напор воды, который необходим для обеспечения ее циркуляции во внутридомовой разводке, с преодолением гидравлического сопротивления системы.

Как видно, система чрезвычайно проста, но очень эффективна, что и обуславливает ее широкое применение даже в условиях конкуренции с современным высокотехнологичным оборудованием.

Безусловно, элеватор нуждается в определенной обвязке. Примерная схема элеваторного узла приведена на схеме:

Элеваторный узел системы отопления

Базовая схема обвязки элеваторного узла

Разогретая вода из тепловой магистрали поступает по трубе подачи (поз. 1), и возвращается в нее по трубе обратки (поз. 2). От магистральных труб внутридомовая система может отключаться с помощью задвижек (поз. 3). Вся сборка отдельных деталей и устройств осуществляется с применением фланцевых соединений (поз. 4 ).

Регулировочное оборудование весьма чувствительно к чистоте теплоносителя, поэтому на входе и выходе из системы монтируются фильтры грязевики (поз. 5), прямого или «косого» типа. В них оседают т вердые нерастворимые включения и грязь, попавшая в полость труб. Периодически проводится очистка грязевиков от собранных осадков.

Элеваторный узел системы отопления

Фильтры-«грязевики», прямого (снизу) и «косого» типа

На определенных участках узла установлены контрольно-измерительные приборы. Это манометры (поз. 6), позволяющие контролировать уровень давления жидкости в трубах. Если на входе давление может достигать 12 атмосфер, то уже на выходе из элеваторного узла оно значительно ниже, и зависит от этажности здания и количества точек теплообмена в нем.

Обязательно стоят термодатчики –термометры (поз. 7), контролирующие уровень температуры теплоносителя: на входе их централи – t ц, входе во внутридомовую систему – t с, на «обратках» системы и централи – t ос и   t оц.

Далее, установлен сам элеватор (поз. 8). Правила его монтажа требуют обязательного наличия прямого участка трубопровода не менее 250 мм. Одним, входным патрубком он через фланец соединен к подающей трубе из централи, противоположным – к трубе внутридомовой разводки (поз. 11). Нижний патрубок с фланцем подключен через перемычку (поз. 9) к трубе «отбратки» (поз. 12).

Для проведения профилактических или аварийно-ремонтных работ предусматриваются задвижки (поз. 10), полностью отключающие элеваторный узел от внутридомовой сети. На схеме не показаны, но на практике обязательно присутствуют специальные элементы для дренирования – слива воды из внутридомовой системы при возникновении такой необходимости.

Безусловно, схема дана в очень упрощенном виде, но она в полной мере отражает базовое устройство элеваторного узла. Широкими стрелками показаны направления потоков теплоносителя с разными уровнями температур.

Бесспорными преимуществами использования элеваторного узла для регулировки температуры и давления теплоносителя являются:

  • Простота конструкции при безотказности в эксплуатации.
  • Невысокая стоимость комплектующих и их монтажа.
  • Полная энергонезависимость подобного оборудования.
  • Использование элеваторных узлов и приборов учета тепла позволяют достичь экономии в расходе потребленного теплоносителя до 30%.

Есть, конечно, и весьма значимые недостатки:

  • Каждой системе требуется индивидуальный расчет для подбора требуемого элеватора.
  • Необходимость обязательного перепада давления на входе и выходе.
  • Невозможность точных плавных регулировок при текущем изменении параметров системы.

Последний недостаток – достаточно условен, так как на практике часто применяются элеваторы, в которых предусмотрена возможность изменения его рабочих характеристик.

Элеваторный узел системы отопления

Кинематическая схема регулируемого сопла элеватора

Для этого в приемной камере с соплом (поз. 1) установлена специальная игла – конусовидный стержень (поз. 2), который уменьшает сечение сопла. Этот стержень в блоке кинематики (поз. 3) через реечную зубчатую передачу (поз. 4 — 5) связан с регулировочным валом (поз. 6). Вращение вала вызывает перемещение конуса в полости сопла, увеличивая или уменьшая просвет для прохода жидкости. Соответственно, меняются и рабочие параметры всего элеваторного узла.

В зависимости от уровня автоматизации системы, могут применяться различные типы регулируемых элеваторов.

Элеваторный узел системы отопления

Элеватор с ручной регулировкой сопла

Так, передача вращения может осуществляться вручную – ответственный специалист отслеживает показания контрольно-измерительных приборов и вносит коррективы в работу системы, ориентируясь на на несенную около маховика (рукоятки) шкалу.

Элеваторный узел системы отопления

Регулировка может проводиться в автоматическом режиме, с использованием сервопривода

Другой вариант – когда элеваторный узел завязан на электронную систему контроля и управления. Показания снимаются в автоматическом режиме, блок управления вырабатывают сигналы для передачи их на сервоприводы, через которых вращение передается на кинематический механизм регулируемого элеватора.


Элеваторный узел системы отопления

Что нужно знать о теплоносителях?

В системах отопления, особенно — в автономных, в качестве теплоносителя может использоваться не только вода.

Какими качествами должен обладать теплоноситель для системы отопления , и как правильно его выбрать — в специальной публикации портала.

Расчет и подбор элеватора системы отопления

Как уже говорилось, для каждого здания требуется определенное количеств тепловой энергии. Это означает что необходим определенный расчёт элеватора, исходя из заданных условий эксплуатации системы.

К исходным данным можно отнести:

  • Значения температуры:
  • — на входе их тепловой централи;

    — в «обратке» тепловой централи;

    — рабочее значение для внутридомовой системы отопления;

    — в обратной трубе системы.

  • Общее количество тепла, потребное для отопления конкретного дома.
  • Параметры, характеризующие особенности внутридомовой разводки отопления.
  • Порядок расчета элеватора установлен специальным документом – «Сводом правил по проектированию Минстроя РФ», СП 41-101-95, касающимся именно проектирования тепловых пунктов. В этом нормативном руководстве приведены формулы расчета, но они – достаточно «тяжеловесные», и приводить их в статье – нет особой необходимости.

    Те читатели, которых мало интересуют вопросы расчета, могут смело пропустить этот раздел статьи. А тем, кто желает самостоятельно рассчитать элеваторный узел, можно порекомендовать потратить 10 - 15 минут времени, чтобы создать собственный калькулятор, основанный на формулах СП, позволяющий проводить точные подсчеты буквально за считаные секунды.

    Создание калькулятора для расчета

    Для работы потребуется обычное приложение Excel, которое есть, наверное, у каждого пользователя – оно входит в базовый пакет программ MicrosoftOffice. Составление калькулятора не представит особого труда даже для тех пользователей, которые никогда не сталкивались с вопросами элементарного программирования.

    Рассмотрим пошагово:

    (если часть текста в таблице выходит за рамки, то внизу есть «движок» для горизонтальной прокрутки)

    Иллюстрация Краткое описание выполняемой операции Откройте новый файл (книгу) в приложении Excel пакета Microsoft Office.
    В ячейке А1 наберите текст «Калькулятор для расчета элеватора системы отопления».
    Ниже, в ячейке А2 набираем «Исходные данные».
    Надписи можно "поднять", изменяя жирность, размер или цвет шрифта. Ниже расположатся строки с ячейками для ввода исходных данных, на основании которых и будет проводиться расчет элеватора.
    Заполняем текстом ячейки с А3 по А7:
    А3 – «Температура теплоносителя, градусы С:»
    А4 – «в подающей трубе тепловой централи»
    А5 – «в обратке тепловой централи»
    А6 – «необходимая для внутридомовой системы отопления»
    А7 – «в обратке системы отопления» Для наглядности можно пропустить строку, а ниже, в ячейку А9 вносим текст «Необходимое количество тепла для системы отопления, кВт» Пропускаем еще строку, и в ячейку А11 впечатываем «Коэффициент сопротивления системы отопления дома, м».
    Чтобы текст из столбца А не находил на столбец В, куда будут в дальнейшем вноситься данные, столбец А можно раздвинуть на необходимую ширину (показано стрелкой). Область ввода данных, от А2-В2 до А11-В11 можно выделить и сделать заливку цветом. Так она будет отличаться от другой области, где будут выдаваться результаты вычислений. Пропускаем еще одну строку и вводим в ячейку А13 «Результаты расчета:»
    Можно выделить текст другим цветом. Далее, начинается самый ответственный этап. Помимо ввода текста в ячейки столбца А, в рядом стоящие ячейки столбца В вписываются формулы, в соответствии с которыми и будут проводиться расчеты.
    Формулы следует переносить в точности, как это будет указано, безо всяких лишних пробелов.
    Важно: формула вводится в русской раскладке клавиатуры, за исключением имен ячеек – они вводятся исключительно в латинской раскладке. Для того, чтобы не ошибиться с этим, в приведенных примерах формул имена ячеек будут выделены жирным шрифтом.
    Итак, в ячейке А14 набираем текст «Температурный перепад тепловой централи, градусов С». в ячейку В14 вносим следующее выражение
    =(B4-B5)
    И осуществлять ввод, и контролировать его правильность удобнее в строке формул (зеленая стрелка).
    Пусть вас не смущает то, что в ячейке В14 сразу появилось какое-то значение (в данном случае «0», синяя стрелка), просто программа сразу отрабатывает формулу, опираясь пока на пустые ячейки ввода. Заполняем следующую строку.
    В ячейке А15 – текст «Температурный перепад системы отопления, градусов С», а в ячейке В15 – формула
    =(B6-B7) Следующая строка. В ячейке А16 – текст: «Необходимая производительность системы отопления, куб.м/час».
    Ячейка В16 должна содержать следующую формулу:
    =(3600*B9)/(4,19*970*B14)
    Появится сообщение об ошибке, «деление на ноль» - не обращаем внимания, это просто оттого, что не внесены исходные данные. Идем ниже. В ячейке А17 – текст: «Коэффициент смешения элеватора».
    Рядом, в ячейке В17 – формула:
    =(B4-B6)/(B6-B7) Далее, ячейка А18 – «Минимальный напор теплоносителя перед элеватором, м».
    Формула в ячейке В18:
    =1,4*B11*(СТЕПЕНЬ((1+B17);2))
    Не сбейтесь с количеством скобок – это важно Следующая строка. В ячейке А19 текст: «Диаметр горловины элеватора, мм».
    Формула в ячейке В18 следующая:
    =8,5*СТЕПЕНЬ((СТЕПЕНЬ(B16;2)*СТЕПЕНЬ(1+B17;2))/B11;0,25) И последняя строка расчётов.
    В ячейке А20 вводится текст «Диаметр сопла элеватора, мм».
    В ячейке В20 – формула:
    =9,6*СТЕПЕНЬ(СТЕПЕНЬ(B16;2)/B18;0,25) По сути, калькулятор готов. Можно только его несколько «модернизировать, чтобы он был удобнее в работе, и не было риска случайно удалить формулу.
    Для начала, выделим область от А13-В13 до А20-В20, и зальем ее другим цветом. Кнопка заливки показана стрелкой. Теперь выделяем общую область с А2-В2 по А20-В20.
    В выпадающем меню «границы» (показано стрелкой) выбираем пункт «все границы».
    Наша таблица получает стройное обрамление линиями. Теперь нужно сделать так, чтобы значения вручную можно было ввести только лишь в те ячейки, которые для этого предназначены (чтобы не стереть или не нарушить случайно формулы).
    Выделяем диапазон ячеек от В4 до В11 (красные стрелки). Заходим в меню «формат» (зеленая стрелка) и выбираем пункт «формат ячеек» (синяя стрелка). В открывшемся окне выбираем последнюю вкладку – «защита» и в окошке «защищаемая ячейка» убираем галочку. Теперь вновь идем в меню «формат», и выбираем в нем пункт «защитить лист». Появится небольшое окошко, в котором останется всего лишь нажать кнопку «ОК». Предложение ввести пароль просто игнорируем – в нашем документе такая степень защиты не нужна.
    Теперь можно быть уверенным, что никакого сбоя не будет – для изменения открыты только лишь ячейки в столбце В в области ввода значений.
    При попытке внести хоть что-нибудь в любые другие ячейки появится окно с предупреждением о невозможности такой операции. Калькулятор готов.
    Осталось лишь сохранить файл. – и он всегда будет готов к проведению расчета.

    Провести подсчет в созданном приложении – не составляет никакого труда. Достаточно лишь заполнить известными значениями область ввода – дальше программа все рассчитает в автоматическом режиме.

    • Температуру подачи и «обратки» в тепловой централи можно узнать в ближайшем к дому теплопункте (котельной).
    • Требуемая температура теплоносителя во внутридомовой системе в большей мере зависит от того, какие теплообменные приборы установлены в квартирах.
    • Температура в трубе «обратки» системы чаще всего принимается равной аналогичному показателю в централи.
    • Потребность дома в общем притоке тепловой энергии зависит от количества квартир, точек теплообмена (радиаторов), особенностей здания – степени его утепленности, объема помещений, количества общих теплопотерь и т.п. Обычно эти данные рассчитываются заблаговременно еще на стадии проектирования дома или при проведении реконструкции системы его отопления.
    • Коэффициент сопротивления внутреннего контура отопления дома рассчитывается по отдельным формулам, с учетом особенностей системы. Однако, не будет большой ошибкой взять и усредненные значения, приведенные в таблице ниже:

    Типы многоквартирных жилых домов Значение коэффициента, м Многоквартирные дома старой постройки, с контурами отопления из стальных труб, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 1 Дома, введенные в эксплуатацию или в которых проведен капитальный ремонт в период до 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах 3 - 4 Дома, введенные в эксплуатацию либо после капитального ремонта в период после 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 2 То же самое, но с установленными приборами регулировки температуры и расхода теплоносителя на стояках и радиаторах 4 - 6

    Проведение расчетов и подбор нужной модели элеватора

    Попробуем калькулятор в действии.

    Допустим, что температура в подающей трубе тепловой централи – 135, а в обратной – 70 °С. Планируется поддерживать в системе отопления дома температуру в 85 ° С , на выходе – 70 °С. Для качественного обогрева всех помещений необходима тепловая мощность в 80 кВт. По таблице определено, что коэффициент сопротивления равен «1».

    Подставляем эти значения в соответствующие строки калькулятора, и сразу же получаем необходимые результаты:

    После внесения исходных данных сразу получаем готовый результат

    В итоге имеем данные для подбора нужной модели элеватора и условия для его корректной работы. Так, получена требуемая производительность системы – количество теплоносителя, прокачиваемого в единицу времени, минимальный напор водяного столба. И самые основные величины – это диаметры сопла элеватора и его горловины (смесительной камеры).

    Диаметр сопла принято округлять до сотых долей миллиметра в меньшую сторону ( в данном случае – 4,4 мм). Минимальное значение диаметра должно быть 3 мм – в противном случае сопло просто будет быстро забиваться.

    Калькулятор позволяет и «поиграть» значениями, то есть посмотреть, как они будут изменяться при изменении исходных параметров. Например, если температура в теплоцентрали понижена, скажем, до 110 градусов, то это повлечет и другие параметры узла.

    Изменение любого исходного параметра сразу дает и изменение результатов вычислений

    Как видно, диаметр сопла элеватора уже составляет 7,2 мм.

    Это дает возможность выбора устройства с наиболее приемлемыми параметрами, с определенным диапазоном регулировок, или же комплекта сменных сопел для конкретной модели.

    Имея рассчитанные данные, уже можно обратиться к таблицам предприятий-изготовителей подобного оборудования для выбора требуемого варианта исполнения.

    Обычно в этих таблицах, помимо рассчитанных величин, приводятся и другие параметры изделия – его габариты, размеры фланцев, масса и пр.

    Для примера – водоструйные стальные элеваторы серии 40с10бк:

    Основные линейные параметры струйного элеватора

    Фланцы: 1 – на входе, 1—1 – на врезке трубы из «обратки», 1—2 – на выходе.

    2 – входной патрубок.

    3 – съемное сопло.

    4 – приемная камера.

    5 – смесительная горловина.

    7 – диффузор.

    Основные параметры сведены в таблицу – для удобства выбора:

    Номер
    элеватора Размеры, мм Масса,
    кг Примерный
    расход воды
    из сети,
    т/ч dc dг D D1 D2 l L1 L 1 3 15 110 125 125 90 110 425 9,1 0,5-1 2 4 20 110 125 125 90 110 425 9,5 1-2 3 5 25 125 160 160 135 155 626 16,0 1-3 4 5 30 125 160 160 135 155 626 15,0 3-5 5 5 35 125 160 160 135 155 626 14,5 5-10 6 10 47 160 180 180 180 175 720 25 10-15 7 10 59 160 180 180 180 175 720 34 15-25

    При этом производитель допускает самостоятельную замену сопла с нужным диаметром в определенном диапазоне:

    Модель элеватора, № Возможный диапазон смены сопла, O мм №1 min 3 мм, max 6 мм №2 min 4 мм, max 9 мм №3 min 6 мм, max 10 мм №4 min 7 мм, max 12 мм №5 min 9 мм, max 14 мм №6 min 10 мм, max 18 мм №7 min 21 мм, max 25 мм

    Подобрать требуемую модель, имея на руках результаты расчета – не представит особого труда.

    При монтаже элеватора или при проведении профилактических работ следует обязательно учитывать, что от правильности установки и целостности деталей напрямую зависит эффективность работы узла.

    Так, конус сопла (стакан) должен быть установлен строго соосно с камерой смешения (горловиной). Сам стакан в посадочное гнездо элеватора должен входить свободно, чтобы была возможность его извлечения для ревизии или замены.

    При проведении ревизий следует обращать особое внимание на состояние поверхностей отделов элеватора. Даже наличие фильтров не исключает абразивного воздействия жидкости, плюс к этому никуда не деться от эрозийных процессов и коррозии. Сам рабочий конус должен иметь отполированную внутреннюю поверхность, ровные, неизношенные края сопла. При необходимости производится его замена на новую деталь.

    Сопла элеватора нуждаются в периодической ревизии и замене

    Несоблюдение таких требований влечет снижение КПД узла и падение давления, необходимого для циркуляции теплоносителя во внутридомовой разводке отопления. Кроме того, износ сопла, его загрязнение или слишком большой диаметр (существенно выше расчётного), приведут к появлению сильных гидравлических шумов, которые по трубам отопления будут передаваться в жилые помещения здания.

    Элеваторный узел с автоматической регулировкой

    Конечно, система отопления дома с простейшим элеваторным узлом – далеко не образец совершенства. Она весьма тяжело поддается регулировке, которая требует разборки узла и замены инжекторного сопла. Поэтому оптимальным вариантом видится, все же, модернизация с установкой регулируемых элеваторов, позволяющих изменять параметры смешения теплоносителя в определенном диапазоне.

    А как регулировать температуру в квартире?

    Температура теплоносителя во внутридомовой сети может быть избыточна для отдельно взятой квартиры, например, если в ней используются «теплые полы». Значит, потребуется установка собственного оборудования, которое поможет поддерживать степень нагрева на нужном уровне.

    Варианты, как подключить теплые полы к отоплению – в специальной статье нашего портала.

    И напоследок – видео с компьютерной визуализацией устройства и принципа действия элеватора отопления:

    Видео: устройство и работа элеватора отопления

    infocars24.ru
    Репост
    Наверх